
Linux Support for Monitoring
and Controlling Complex

Executions

Working Group Outbrief

Scalable Tools Workshop 2025

Needs

● For applications to run at large scale, executables, their dynamic shared
libraries need to load efficiently

○ Motivation for LLNL’s Spindle
● Measuring the performance of complex applications requires intricate

integration of tooling with application code
○ Wrapping functions in application and its libraries
○ Loading tool code into namespaces so applications and tools don’t conflict
○ Dynamically loading only tool components needed for measurements desired

● Need support for multiple tools
○ At a minimum: Spindle + Performance Tool
○ Need support to integrate these functionalities

■ Don’t want to prevent fast loading to use a tool
■ Would like fast loading help load the tools

Concerns

● LD_AUDIT supports observation and control of dynamic library loading and symbol binding
○ There still seem to be some bugs

■ Are symbind callbacks generated everywhere they are needed?
○ If you wrap dlopen, library constructors are invoked before you get control

■ Lack an interface for intercepting execution immediately after an object’s constructor fires
● Glibc

○ Bugs
■ Support for thread-local storage with multiple namespaces
■ Support for thread-local storage for auditors

○ Missing features
■ Lacks some functionality that would help tools
■ Support for an interface to rebind symbols for interposition like LLNL’s GOTCHA

● Propose dlresym (for rebinding a symbol) as a building block for GOTCHA-like interposition
■ Support for attaching tools to running process, e.g. like thread_db for debuggers

● Libdl
○ Need a way to get a path to an object that doesn’t have buffer overflow

Beyond LD_AUDIT

● Preliminary efforts for interfaces above LD_AUDIT
○ Audacious (Matt LeGendre)

■ Function wrapping
■ Library redirection: old path → new path

○ Ninlil (Jonathon Anderson)
■ High-level C++ layer on top of LD_AUDIT
■ Library tracking and redirection

Next Steps

Make progress in the presence of bugs

● Integrate code from GOTCHA into HPCToolkit to sidestep problem with
pthread keys on Aurora

○ Locate pthread key routines without using libdl interfaces that create pthread keys!

Work towards a better future

● Assemble detailed list of bugs and key needs
○ With reproducers and test cases

● Engage Linux developers through Ben Woodard
● Rice and LLNL to collaborate on an API beyond LD_AUDIT

○ begin to formalize a basic interface

GLIBC Feature Requests
● First-party tool interface for notification on library loading

○ If you wrap dlopen, library constructors are invoked before you get control
● More notification of interesting events for tools

○ R_BRK is how debuggers intercept library loading
■ Be able to add a callback inside R_BRK rather than just having it as a place a debugger can put a trap

○ How to intercept file operations
■ API?
■ Wrapping?

● Strengths of wrapping: easy to change or chain wrappers
■ Pad interfaces with nops so interception could be injected

● First-party interface for SDT points?
● Introspection API

○ If attaching to a process, want a thread_db-like interface to understand the threads present
● Should have a GOTCHA-like interface

○ Why? To support Pthread_keys using GOT rewriting
○ Wild-card style wrapping is useful

● LD_AUDIT
○ Needs hook for library constructors
○ la_symbind is missing notifications sometimes

■ && vs. ||
■ Also missing for data relocations

● Dlresym
○ Replace GOT entry for a symbol in the context of a library with this value

● Wrapping focused interface rather than a function symbol-focused interface

GOTCHA

● Library for function interposition
○ For example, enables a tool to inject wrappers for MPI functions inside an application without

involving library preloading or using LD_AUDIT
■ Caliper uses this strategy

● Currently only works on x86 and power
● Writing a first party tool that is not loaded with LD_AUDIT. Want to know when

libraries load
● What would it take for glibc to provide GOTCHA support?

○ Need a white paper
■ Problems it solves

○

Caliper

● Wants to live in process namespace: needs to be visible to application
● Can’t be an auditor

○ There is some disagreement about this
● Supports user-configurable wrapping

○ MPI functions
○ I/O functions
○ Umpire measurements

